Research Methodology Statistics Comprehensive Exam Study Guide

References

Outline

• Basic definition
 – Measurement Scale
 – Population vs. sample
 – Discrete vs continuous variables
 – Qualitative vs quantitative variables
 – Sampling
 – Randomization
 – Sampling error

• Descriptive statistics
 – General
 – Central Tendency
 * Mean
 * Median
 * Mode
 – Variability
 * Range
 * Interquartile Range / Semi-Interquartile Range
 * Variance
 * Standard Deviation
 – Distribution
 * Frequency Distribution
 * Percentile Ranks/Percentiles
– Standard Scores
 * T-scores
 * z-scores
 * Linear Transformation
– Graphing data
 * Bar Graph
 * Polygon
 * Histogram
 * Boxplot
 * Stem-and-leaf
 * Ogive

• Theoretical distribution
 – General
 – Normal Distribution
 – t
 – F
 – Chi-square
 – Binomial
 – Relationships among theoretical distributions

• Correlation
 – General
 – Covariance
 – Scatterplot
 – Point-biserial correlation
 – Pearson product-moment correlation
 – Spearman Rank correlation
 – Phi correlation

• Simple Linear Regression
 – Linear regression model
 – Ordinary least square
 – R-square
 – Standard error of estimate

• Probability
 – General
 – Independent events
– Mutual exclusive
– Sample space
– Sampling with/without replacement

• Sampling distribution
 – General
 – Central Limit Theorem
 – Logic of sampling distribution
 – Standard error

• Hypothesis testing
 – Concepts
 * Logic of hypothesis testing
 * One-tailed two-tailed test
 * p-value
 * Type I and Type II error
 * Power
 * Sample Size
 – z-test
 – One-sample t-test
 – Paired-sample t-test
 – Independent-sample t-test
 – Test of Correlation Coefficient

• Estimation (confidence intervals)
 – Point estimate
 – Confidence Interval
 – Relationship between hypothesis testing and confidence interval

• Nonparametric (chi-square)
 – One-way Chi-square
 – Two-way Chi-square

• One-way between subjects ANOVA
 – Statistical model
 – Main effect
 – Assumption
 – Comparisons
 * Planned
post-hoc adjustments
orthogonality
 – effect size (eta-square & omega-square)
 – power

• two-way between subjects ANOVA
 – statistical model
 – main effect
 – interaction effect
 – simple effects
 * simple main effect
 * simple comparisons
 * marginal comparisons
 * interaction contrast
 * planned
 * post-hoc adjustments
 – assumption
 – effect size
 – power

• one-way within subjects ANOVA
 – statistical model
 – main effect
 – assumption
 * sphericity
 * compound symmetry
 * greenhouse-geiser
 * huynh-feldt
 – comparison
 * planned
 * post-hoc adjustments
 * orthogonality
 – effect size (eta-square & omega-square)
 – power

• two-way within subjects ANOVA
 – statistical model
 – main effect
 – interaction effect
– Simple effects
 * Simple main effect
 * Simple comparisons
 * Marginal comparisons
 * Interaction contrast
 * Planned
 * Post-hoc adjustments
– Assumption
 * Sphericity
 * Compound Symmetry
 * Greenhouse-Geiser
 * Huynh-Feldt
– Effect Size (eta-square & omega-square)
– Power

• Two-way mixed ANOVA
 – Statistical model
 – Main effect
 – Interaction effect
 – Simple effects
 * Simple main effect
 * Simple comparisons
 * Marginal comparisons
 * Interaction contrast
 * Planned
 * Post-hoc adjustments
 – Assumption
 * Sphericity
 * Compound Symmetry
 * Greenhouse-Geiser
 * Huynh-Feldt
 – Effect Size
 – Power

• One-Way Between-Subjects ANCOVA
 – Statistical model
 – Main effect
 – Comparisons
 * Planned
 * Post-hoc adjustments
 – Adjusted means
 – Assumption
 * Homogeneity of regression
Terminology and Notation - ANOVA

- A and B will denote IVs
- Y will denote a DV
- SS - sum of squares
- MS - mean squares

Between-subjects ANOVA

Subjects appear only in one group/cell

- One-way between-subjects ANOVA: there is only 1 IV (A)

 - model

 \[Y_{ij} = \mu + \alpha_j + \varepsilon_{ij} \]

 where

 * μ - grand mean
 * Y_{ij} is the dependent variable for subject i in j^{th} group
 * $\alpha_j = \mu_j - \mu$ where μ_j is the mean of a DV for group j
 * $\varepsilon_{ij} \sim N(0, \sigma^2)$

 - sum of squares

 \[SS_{\text{total}} = SS_A + SS_{S/A} \]

 * SS_A - sum of squares of A (aka sum of squares between groups)
 * $SS_{S/A}$ - sum of square error (aka sum of squares within groups)

- Two-way between-subjects ANOVA: there are 2 IVs (A and B)

 - model

 \[Y_{ijk} = \mu + \alpha_j + \beta_k + \alpha\beta_{jk} + \varepsilon_{ijk} \]

 * grand mean: μ
 * main effect of A: $\alpha_j = \mu_j - \mu$
 * main effect of B: $\beta_k = \mu_k - \mu$
 * interaction effect $A \times B$: $\alpha\beta_{jk} = \mu_{jk} - \mu - \alpha_j - \beta_k = \mu_{jk} - \mu_j - \mu_k + \mu$
 * individual difference: $\varepsilon_{ijk} = y_{ijk} - \mu_{jk}$

 - sum of squares

 \[SS_{\text{total}} = SS_A + SS_B + SS_{A \times B} + SS_{S/AB} \]

 * sum of squares between-groups breaks up into SS_A, SS_B, and $SS_{A \times B}$
 * $SS_{S/AB}$ - sum of squares error (aka sum of squares within groups)
– main effect of \(A\), main effect of \(B\), and interaction of \(AB\)

– simple effects
 * simple main effects
 * simple comparisons
 * marginal comparisons
 * interaction contrasts (tetrad differences)

Within-subjects ANOVA

aka repeated-measures ANOVA. Subjects appear in all the cells.

- one-way within-subjects ANOVA: there is only 1 IV

 – model
 \[
 Y_{ij} = \mu + \alpha_j + S_i + \alpha S_{ij} + \varepsilon_{ij}
 \]
 (5)

 * grand mean: \(\mu\) - mean of the DV
 * iv effect: \(\alpha_j = \mu_j - \mu\)
 * individual difference: \(S_i = \mu_i - \mu\)
 * individual by iv: \(\alpha S_{ij} = y_{ij} - \mu - \alpha_j - S_i\). idiosyncratic response of the subject in a particular condition. differences in skill, ability, or predilection make some subjects perform better in one condition, others in another.
 * variability of the individual observation: \(\varepsilon_{ij}\)

 – sum of squares
 \[
 SS_{\text{total}} = SS_A + SS_S + SS_{A\times S}
 \]
 (6)

 * sum of squares between-subjects, \(SS_S\)
 * sum of squares within-subjects breaks up into \(SS_A\) and \(SS_{A\times S}\)

- two-way within-subjects ANOVA: there are 2 IVs

 – model
 \[
 Y_{ijk} = \mu + \alpha_j + \beta_k + \alpha\beta_{jk} + S_i + \alpha S_{ij} + \beta S_{ik} + \alpha\beta S_{ijk} + \varepsilon_{ijk}
 \]
 (7)

 * grand mean: \(\mu\)
 * main effect of \(A\): \(\alpha_j = \mu_j - \mu\)
 * main effect of \(B\): \(\beta_k = \mu_k - \mu\)
 * interaction effect of \(AB\): \(\alpha\beta_{jk} = \mu_{jk} - \alpha_j - \beta_k - \mu\)
 * \(S_i = \mu_i - \mu\)
 * \(\alpha S_{ij} = \mu_j - \alpha_j - S_i - \mu\)
 * \(\beta S_{ik} = \mu_k - \beta_k - S_i - \mu\)
 * \(\alpha\beta S_{ijk} = y_{ijk} - \alpha\beta_{jk} - \alpha S_{ij} - \beta S_{ik} - \mu - \alpha_j - \beta_k - S_i\)

 – sum of squares
 \[
 SS_{\text{total}} = SS_A + SS_B + SS_{A\times B} + SS_S + SS_{A\times S} + SS_{B\times S} + SS_{A\times B\times S}
 \]
 (8)

 * sum of squares between-subjects, \(SS_S\)
 * sum of squares within-subjects breaks up into \(SS_A\), \(SS_B\), \(SS_{A\times B}\), \(SS_{A\times S}\), \(SS_{B\times S}\), \(SS_{A\times B\times S}\)
Two-way mixed ANOVA

Subjects appear in some of the cells (more than 1, less than all). There are 2 IVs (1 within-subjects, 1 between-subjects)

- model
 \[Y_{ijk} = \mu + \alpha_j + \beta_k + \alpha\beta_{jk} + S_{ij} + \beta S_{ijk} + \epsilon_{ijk} \] (9)
 - grand mean: \(\mu \)
 - main effect of A: \(\alpha_j = \mu_j - \mu \)
 - main effect of B: \(\beta_k = \mu_k - \mu \)
 - interaction effect of AB: \(\alpha\beta_{jk} = \mu_{jk} - \alpha_j - \beta_k - \mu \)
 - between-subjects error: \(S_{ij} = \mu_{ij} - \mu \)
 - within-subjects error: \(\beta S_{ijk} = y_{ijk} - \alpha\beta_{jk} - S_{ij} - \mu - \alpha_i - \beta_k \)

- sum of squares
 \[SS_{\text{total}} = SS_A + SS_B + SS_{A\times B} + SS_{S/A} + SS_{B\times S/A} \] (10)
 - sum of squares between-groups breaks up into \(SS_A \) and \(SS_{S/A} \)
 - sum of squares within-groups breaks up into \(SS_B, SS_{A\times B} \) and \(SS_{B\times S/A} \)