Research Methodology Statistics Comprehensive Exam Study Guide

References

Glass, G. V., \& Hopkins, K. D. (1996). Statistical methods in education and psychology (3rd ed.). Boston: Allyn and Bacon.
Gravetter, F. J. (2006). Statistics for the behavioral sciences : analysis and application for the public sector (7th ed.). Belmont, MO: Wadsworth.
Keppel, G., \& Wickens, T. D. (2004). Design and analysis : a researcher's handbook. Upper Saddle River, N.J.: Pearson Prentice Hall.
Lomax, R. G. (2001). Statistical concepts : a second course for education and the behavioral sciences (2nd ed.). Mahwah, N.J.: Lawrence Erlbaum Associates.
Shavelson, R. J. (1996). Statistical reasoning for the behavioral sciences (3rd ed.). Boston, Mass.: Allyn and Bacon.

Outline

- Basic definition
- Measurement Scale
- Population vs. sample
- Discrete vs continuous variables
- Qualitative vs quantitative variables
- Sampling
- Randomization
- Sampling error
- Descriptive statistics
- General
- Central Tendency
* Mean
* Median
* Mode
- Variability
* Range
* Interquartile Range / Semi-Interquartile Range
* Variance
* Standard Deviation.
- Distribution
* Frequency Distribution
* Percentile Ranks/Percentiles
- Standard Scores
* T-scores
* Z-scores
* Linear Transformation
- Graphing data
* Bar Graph
* Polygon
* Histogram
* Boxplot
* Stem-and-leaf
* Ogive
- Theoretical distribution
- General
- Normal Distribution
- t
- F
- Chi-square
- Binomial
- Relationships among theoretical distributions
- Correlation
- General
- Covariance
- Scatterplot
- Point-biserial correlation
- Pearson product-moment correlation
- Spearman Rank correlation
- Phi correlation
- Simple Linear Regression
- Linear regression model
- Ordinary least square
- R-square
- Standard error of estimate
- Probability
- General
- Independent events
- Mutual exclusive
- Sample space
- Sampling with/without replacement
- Sampling distribution
- General
- Central Limit Theorem
- Logic of sampling distribution
- Standard error
- Hypothesis testing
- Concepts
* Logic of hypothesis testing
* One-tailed two-tailed test
* p-value
* Type I and Type II error
* Power
* Sample Size
- z-test
- One-sample t-test
- Paired-sample t-test
- Independent-sample t-test
- Test of Correlation Coefficient
- Estimation (confidence intervals)
- Point estimate
- Confidence Interval
- Relationship between hypothesis testing and confidence interval
- Nonparametric (chi-square)
- One-way Chi-square
- Two-way Chi-square
- One-way between subjects ANOVA
- Statistical model
- Main effect
- Assumption
- Comparisons
* Planned
* Post-hoc adjustments
* Orthogonality
- Effect Size (eta-square \& omega-square)
- Power
- Two-way between subjects ANOVA
- Statistical model
- Main effect
- Interaction effect
- Simple effects
* Simple main effect
* Simple comparisons
* Marginal comparisons
* Interaction contrast
* Planned
* Post-hoc adjustments
- Assumption
- Effect Size
- Power
- One-way within subjects ANOVA
- Statistical model
- Main effect
- Assumption
* Sphericity
* Compound Symmetry
* Greenhouse-Geiser
* Huynh-Feldt
- Comparison
* Planned
* Post-hoc adjustments
* Orthogonality
- Effect Size (eta-square \& omega-square)
- Power
- Two-way within subjects ANOVA
- Statistical model
- Main effect
- Interaction effect
- Simple effects
* Simple main effect
* Simple comparisons
* Marginal comparisons
* Interaction contrast
* Planned
* Post-hoc adjustments
- Assumption
* Sphericity
* Compound Symmetry
* Greenhouse-Geiser
* Huynh-Feldt
- Effect Size (eta-square \& omega-square)
- Power
- Two-way mixed ANOVA
- Statistical model
- Main effect
- Interaction effect
- Simple effects
* Simple main effect
* Simple comparisons
* Marginal comparisons
* Interaction contrast
* Planned
* Post-hoc adjustments
- Assumption
* Sphericity
* Compound Symmetry
* Greenhouse-Geiser
* Huynh-Feldt
- Effect Size
- Power
- One-Way Between-Subjects ANCOVA
- Statistical model
- Main effect
- Comparisons
* Planned
* Post-hoc adjustments
- Adjusted means
- Assumption
* Homogeneity of regression

Terminology and Notation - ANOVA

- A and B will denote IVs
- Y will denote a DV
- $S S$ - sum of squares
- $M S$ - mean squares

Between-subjects ANOVA

subjects appear only in one group/cell

- One-way between-subjects ANOVA: there is only 1 IV (A)
- model

$$
\begin{equation*}
Y_{i j}=\mu .+\alpha_{j}+\varepsilon_{i j} \tag{1}
\end{equation*}
$$

where

* μ. - grand mean
* $Y_{i j}$ is the dependent variable for subject i in $j^{\text {th }}$ group
* $\alpha_{j}=\mu_{j}-\mu$. where μ_{j} is the mean of a DV for group j
* $\varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)$
- sum of squares

$$
\begin{equation*}
S S_{\text {total }}=S S_{A}+S S_{S / A} \tag{2}
\end{equation*}
$$

* $S S_{A}$ - sum of squares of A (aka sum of squares between groups)
* $S S_{S / A}$ - sum of square error (aka sum of squares within groups)
- main effect of A
- two-way between-subjects ANOVA: there are $2 \operatorname{IVs}(A$ and $B)$
- model

$$
\begin{equation*}
Y_{i j k}=\mu_{. .}+\alpha_{j}+\beta_{k}+\alpha \beta_{j k}+\varepsilon_{i j k} \tag{3}
\end{equation*}
$$

* grand mean: μ.
* main effect of $A: \alpha_{j}=\mu_{j}$. $-\mu_{\text {.. }}$
* main effect of $B: \beta_{k}=\mu_{\cdot k}-\mu_{\text {. }}$
* interaction effect $A \times B: \alpha \beta_{j k}=\mu_{j k}-\mu_{. .}-\alpha_{j}-\beta_{k}=\mu_{j k}-\mu_{j} .-\mu_{. k}+\mu_{\text {. }}$
* individual difference: $\varepsilon_{i j k}=y_{i j k}-\mu_{j k}$
- sum of squares

$$
\begin{equation*}
S S_{\text {total }}=S S_{A}+S S_{B}+S S_{A \times B}+S S_{S / A B} \tag{4}
\end{equation*}
$$

* sum of squares between-groups breaks up into $S S_{A}, S S_{B}$, and $S S_{A \times B}$
* $S S_{S / A B}$ - sum of squares error (aka sum of squares within groups)
- main effect of A, main effect of B, and interaction of $A B$
- simple effects
* simple main effects
* simple comparisons
* marginal comparisons
* interaction contrasts (tetrad differences)

Within-subjects ANOVA

aka repeated-measures ANOVA. Subjects appear in all the cells.

- one-way within-subjects ANOVA: there is only 1 IV
- model

$$
\begin{equation*}
Y_{i j}=\mu . .+\alpha_{j}+\mathcal{S}_{i}+\alpha \mathcal{S}_{i j}+\varepsilon_{i j} \tag{5}
\end{equation*}
$$

* grand mean: μ.. - mean of the DV
* iv effect: $\alpha_{j}=\mu_{\cdot j}-\mu_{\text {. }}$
* individual difference: $\mathcal{S}_{i}=\mu_{i}$. $-\mu_{\text {.. }}$
* individual by iv: $\alpha \mathcal{S}_{i j}=y_{i j}-\mu_{\text {.. }}-\alpha_{j}-\mathcal{S}_{i}$. idiosyncratic response of the subject in a particular condition. differences in skill, ability, or predilection make some subjects perform better in one condition, others in another.
* variability of the individual observation: $\varepsilon_{i j}$
- sum of squares

$$
\begin{equation*}
S S_{\text {total }}=S S_{A}+S S_{S}+S S_{A \times S} \tag{6}
\end{equation*}
$$

* sum of squares between-subjects, $S S_{S}$
* sum of squares within-subjects breaks up into $S S_{A}$ and $S S_{A \times S}$
- two-way within-subjects ANOVA: there are 2 IVs
- model

$$
\begin{equation*}
Y_{i j k}=\mu \ldots+\alpha_{j}+\beta_{k}+\alpha \beta_{j k}+\mathcal{S}_{i}+\alpha \mathcal{S}_{i j}+\beta \mathcal{S}_{i k}+\alpha \beta \mathcal{S}_{i j k}+\varepsilon_{i j k} \tag{7}
\end{equation*}
$$

* grand mean: μ...
* main effect of $A: \alpha_{j}=\mu_{\cdot j}-\mu_{\ldots}$
* main effect of $B: \beta_{k}=\mu_{. . k}-\mu_{\ldots}$
* interaction effect of $A B: \alpha \beta_{j k}=\mu_{\cdot j k}-\alpha_{j}-\beta_{k}-\mu_{\ldots}$
* $\mathcal{S}_{i}=\mu_{i . .}-\mu_{\text {... }}$
* $\alpha \mathcal{S}_{i j}=\mu_{i j}-\alpha_{j}-\mathcal{S}_{i}-\mu_{\ldots}$
* $\beta \mathcal{S}_{i k}=\mu_{i \cdot k}-\beta_{k}-\mathcal{S}_{i}-\mu_{\ldots}$.
* $\alpha \beta \mathcal{S}_{i j k}=y_{i j k}-\alpha \beta_{j k}-\alpha \mathcal{S}_{i j}-\beta \mathcal{S}_{i k}-\mu \ldots-\alpha_{j}-\beta_{k}-\mathcal{S}_{i}$
- sum of squares

$$
\begin{equation*}
S S_{\text {total }}=S S_{A}+S S_{B}+S S_{A \times B}+S S_{S}+S S_{A \times S}+S S_{B \times S}+S S_{A \times B \times S} \tag{8}
\end{equation*}
$$

* sum of squares between-subjects, $S S_{S}$
* sum of squares within-subjects breaks up into $S S_{A}, S S_{B}, S S_{A \times B}, S S_{A \times S}$, $S S_{B \times S}, S_{A \times B \times S}$

Two-way mixed ANOVA

Subjects appear in some of the cells (more than 1, less than all). There are 2 IVs (1 withinsubjects, 1 between-subjects)

- model

$$
\begin{equation*}
Y_{i j k}=\mu_{\ldots}+\alpha_{j}+\beta_{k}+\alpha \beta_{j k}+\mathcal{S}_{i j}+\beta \mathcal{S}_{i j k}+\varepsilon_{i j k} \tag{9}
\end{equation*}
$$

- grand mean: μ...
- main effect of $A: \alpha_{j}=\mu_{\cdot j}-\mu_{\ldots}$
- main effect of $B: \beta_{k}=\mu_{. . k}-\mu_{\ldots}$
- interaction effect of $A B: \alpha \beta_{j k}=\mu_{\cdot j k}-\alpha_{j}-\beta_{k}-\mu_{\ldots}$
- between-subjects error: $\mathcal{S}_{i j}=\mu_{i j}-\mu_{\cdot j}$.
- within-subjects error: $\beta \mathcal{S}_{i j k}=y_{i j k}-\alpha \beta_{j k}-\mathcal{S}_{i j}-\mu_{\ldots}-\alpha_{i}-\beta_{k}$
- sum of squares

$$
\begin{equation*}
S S_{\text {total }}=S S_{A}+S S_{B}+S S_{A \times B}+S S_{S / A}+S S_{B \times S / A} \tag{10}
\end{equation*}
$$

- sum of squares between-groups breaks up into $S S_{A}$ and $S S_{S / A}$
- sum of squares within-groups breaks up into $S S_{B}, S S_{A \times B}$ and $S S_{B \times S / A}$

