Research Methodology Statistics Comprehensive Exam Study Guide

References

- Glass, G. V., & Hopkins, K. D. (1996). *Statistical methods in education and psychology* (*3rd ed.*). Boston: Allyn and Bacon.
- Gravetter, F. J. (2006). *Statistics for the behavioral sciences : analysis and application for the public sector (7th ed.)*. Belmont, MO: Wadsworth.
- Keppel, G., & Wickens, T. D. (2004). *Design and analysis : a researcher's handbook*. Upper Saddle River, N.J.: Pearson Prentice Hall.
- Lomax, R. G. (2001). *Statistical concepts : a second course for education and the behavioral sciences* (2nd ed.). Mahwah, N.J.: Lawrence Erlbaum Associates.
- Shavelson, R. J. (1996). *Statistical reasoning for the behavioral sciences (3rd ed.)*. Boston, Mass.: Allyn and Bacon.

Outline

- Basic definition
 - Measurement Scale
 - Population vs. sample
 - Discrete vs continuous variables
 - Qualitative vs quantitative variables
 - Sampling
 - Randomization
 - Sampling error
- Descriptive statistics
 - General
 - Central Tendency
 - * Mean
 - * Median
 - * Mode
 - Variability
 - * Range
 - * Interquartile Range / Semi-Interquartile Range
 - * Variance
 - * Standard Deviation.
 - Distribution
 - * Frequency Distribution
 - * Percentile Ranks/Percentiles

- Standard Scores
 - * T-scores
 - * z-scores
 - * Linear Transformation
- Graphing data
 - * Bar Graph
 - * Polygon
 - * Histogram
 - * Boxplot
 - * Stem-and-leaf
 - * Ogive
- Theoretical distribution
 - General
 - Normal Distribution
 - t
 - F
 - Chi-square
 - Binomial
 - Relationships among theoretical distributions
- Correlation
 - General
 - Covariance
 - Scatterplot
 - Point-biserial correlation
 - Pearson product-moment correlation
 - Spearman Rank correlation
 - Phi correlation
- Simple Linear Regression
 - Linear regression model
 - Ordinary least square
 - R-square
 - Standard error of estimate
- Probability
 - General
 - Independent events

- Mutual exclusive
- Sample space
- Sampling with/without replacement
- Sampling distribution
 - General
 - Central Limit Theorem
 - Logic of sampling distribution
 - Standard error
- Hypothesis testing
 - Concepts
 - * Logic of hypothesis testing
 - * One-tailed two-tailed test
 - * p-value
 - * Type I and Type II error
 - * Power
 - * Sample Size
 - z-test
 - One-sample t-test
 - Paired-sample t-test
 - Independent-sample t-test
 - Test of Correlation Coefficient
- Estimation (confidence intervals)
 - Point estimate
 - Confidence Interval
 - Relationship between hypothesis testing and confidence interval
- Nonparametric (chi-square)
 - One-way Chi-square
 - Two-way Chi-square
- One-way between subjects ANOVA
 - Statistical model
 - Main effect
 - Assumption
 - Comparisons
 - * Planned

- * Post-hoc adjustments
- * Orthogonality
- Effect Size (eta-square & omega-square)
- Power
- Two-way between subjects ANOVA
 - Statistical model
 - Main effect
 - Interaction effect
 - Simple effects
 - * Simple main effect
 - * Simple comparisons
 - * Marginal comparisons
 - Interaction contrast
 - * Planned
 - * Post-hoc adjustments
 - Assumption
 - Effect Size
 - Power
- One-way within subjects ANOVA
 - Statistical model
 - Main effect
 - Assumption
 - * Sphericity
 - * Compound Symmetry
 - * Greenhouse-Geiser
 - * Huynh-Feldt
 - Comparison
 - * Planned
 - * Post-hoc adjustments
 - * Orthogonality
 - Effect Size (eta-square & omega-square)
 - Power
- Two-way within subjects ANOVA
 - Statistical model
 - Main effect
 - Interaction effect

- Simple effects
 - * Simple main effect
 - * Simple comparisons
 - * Marginal comparisons
 - * Interaction contrast
 - * Planned
 - * Post-hoc adjustments
- Assumption
 - * Sphericity
 - * Compound Symmetry
 - * Greenhouse-Geiser
 - * Huynh-Feldt
- Effect Size (eta-square & omega-square)
- Power
- Two-way mixed ANOVA
 - Statistical model
 - Main effect
 - Interaction effect
 - Simple effects
 - * Simple main effect
 - * Simple comparisons
 - * Marginal comparisons
 - * Interaction contrast
 - * Planned
 - * Post-hoc adjustments
 - Assumption
 - * Sphericity
 - * Compound Symmetry
 - * Greenhouse-Geiser
 - * Huynh-Feldt
 - Effect Size
 - Power
- One-Way Between-Subjects ANCOVA
 - Statistical model
 - Main effect
 - Comparisons
 - * Planned
 - Post-hoc adjustments
 - Adjusted means
 - Assumption
 - * Homogeneity of regression

Terminology and Notation - ANOVA

- A and B will denote IVs
- Y will denote a DV
- SS sum of squares
- MS mean squares

Between-subjects ANOVA

subjects appear only in one group/cell

- One-way between-subjects ANOVA: there is only 1 IV (A)
 - model

$$Y_{ij} = \mu_{\cdot} + \alpha_j + \varepsilon_{ij} \tag{1}$$

where

- * μ_{\cdot} grand mean
- * Y_{ij} is the dependent variable for subject *i* in j^{th} group
- * $\alpha_j = \mu_j \mu_j$ where μ_j is the mean of a DV for group j
- * $\varepsilon_{ij} \sim N(0, \sigma^2)$
- sum of squares

$$SS_{\text{total}} = SS_A + SS_{S/A} \tag{2}$$

- * SS_A sum of squares of A (aka sum of squares between groups)
- * $SS_{S/A}$ sum of square error (aka sum of squares within groups)
- main effect of A
- two-way between-subjects ANOVA: there are 2 IVs (A and B)
 - model

$$Y_{ijk} = \mu_{\cdot\cdot} + \alpha_j + \beta_k + \alpha\beta_{jk} + \varepsilon_{ijk}$$
(3)

- * grand mean: $\mu_{..}$
- * main effect of A: $\alpha_j = \mu_{j} \mu_{..}$
- * main effect of $B: \beta_k = \mu_{\cdot k} \mu_{\cdot k}$
- * interaction effect $A \times B$: $\alpha \beta_{jk} = \mu_{jk} \mu_{..} \alpha_j \beta_k = \mu_{jk} \mu_{j.} \mu_{.k} + \mu_{..}$
- * individual difference: $\varepsilon_{ijk} = y_{ijk} \mu_{jk}$

- sum of squares

$$SS_{\text{total}} = SS_A + SS_B + SS_{A \times B} + SS_{S/AB} \tag{4}$$

- * sum of squares between-groups breaks up into SS_A , SS_B , and $SS_{A\times B}$
- * $SS_{S/AB}$ sum of squares error (aka sum of squares within groups)

- main effect of A, main effect of B, and interaction of AB
- simple effects
 - * simple main effects
 - * simple comparisons
 - * marginal comparisons
 - * interaction contrasts (tetrad differences)

Within-subjects ANOVA

aka repeated-measures ANOVA. Subjects appear in all the cells.

- one-way within-subjects ANOVA: there is only 1 IV
 - model

$$Y_{ij} = \mu_{..} + \alpha_j + \mathcal{S}_i + \alpha \mathcal{S}_{ij} + \varepsilon_{ij}$$
⁽⁵⁾

- * grand mean: $\mu_{..}$ mean of the DV
- * iv effect: $\alpha_j = \mu_{j} \mu_{j}$
- * individual difference: $S_i = \mu_{i.} \mu_{..}$
- * individual by iv: $\alpha S_{ij} = y_{ij} \mu_{..} \alpha_j S_i$. idiosyncratic response of the subject in a particular condition. differences in skill, ability, or predilection make some subjects perform better in one condition, others in another.
- * variability of the individual observation: ε_{ij}
- sum of squares

$$SS_{\text{total}} = SS_A + SS_S + SS_{A \times S} \tag{6}$$

- * sum of squares between-subjects, SS_S
- * sum of squares within-subjects breaks up into SS_A and $SS_{A\times S}$
- two-way within-subjects ANOVA: there are 2 IVs
 - model

$$Y_{ijk} = \mu_{\dots} + \alpha_j + \beta_k + \alpha\beta_{jk} + \mathcal{S}_i + \alpha\mathcal{S}_{ij} + \beta\mathcal{S}_{ik} + \alpha\beta\mathcal{S}_{ijk} + \varepsilon_{ijk}$$
(7)

- * grand mean: μ_{\dots}
- * main effect of A: $\alpha_j = \mu_{.j.} \mu_{...}$
- * main effect of B: $\beta_k = \mu_{..k} \mu_{...}$
- * interaction effect of AB: $\alpha\beta_{jk} = \mu_{jk} \alpha_j \beta_k \mu_{jk}$
- * $\mathcal{S}_i = \mu_{i\cdots} \mu_{\cdots}$
- * $\alpha \mathcal{S}_{ij} = \mu_{ij} \alpha_j \mathcal{S}_i \mu_{\cdots}$
- * $\beta S_{ik} = \mu_{i \cdot k} \beta_k S_i \mu_{\dots}$

*
$$\alpha\beta\mathcal{S}_{ijk} = y_{ijk} - \alpha\beta_{jk} - \alpha\mathcal{S}_{ij} - \beta\mathcal{S}_{ik} - \mu_{\cdots} - \alpha_j - \beta_k - \mathcal{S}_{ik}$$

- sum of squares

$$SS_{\text{total}} = SS_A + SS_B + SS_{A \times B} + SS_S + SS_{A \times S} + SS_{B \times S} + SS_{A \times B \times S}$$
(8)

- * sum of squares between-subjects, SS_S
- * sum of squares within-subjects breaks up into SS_A , SS_B , $SS_{A\times B}$, $SS_{A\times S}$, $SS_{B\times S}$, $S_{A\times B\times S}$

Two-way mixed ANOVA

Subjects appear in some of the cells (more than 1, less than all). There are 2 IVs (1 withinsubjects, 1 between-subjects)

• model

$$Y_{ijk} = \mu_{\dots} + \alpha_j + \beta_k + \alpha \beta_{jk} + \mathcal{S}_{ij} + \beta \mathcal{S}_{ijk} + \varepsilon_{ijk}$$
(9)

- grand mean: μ ...
- main effect of A: $\alpha_j = \mu_{\cdot j} \mu_{\cdots}$
- main effect of B: $\beta_k = \mu_{\cdots k} \mu_{\cdots}$
- interaction effect of AB: $\alpha\beta_{jk} = \mu_{jk} \alpha_j \beta_k \mu_{jk}$
- between-subjects error: $S_{ij} = \mu_{ij} \mu_{.j}$.
- within-subjects error: $\beta S_{ijk} = y_{ijk} \alpha \beta_{jk} S_{ij} \mu_{\dots} \alpha_i \beta_k$
- sum of squares

$$SS_{\text{total}} = SS_A + SS_B + SS_{A \times B} + SS_{S/A} + SS_{B \times S/A}$$
(10)

- sum of squares between-groups breaks up into SS_A and $SS_{S/A}$
- sum of squares within-groups breaks up into SS_B , $SS_{A\times B}$ and $SS_{B\times S/A}$